Title:
Hypergraphs of bounded disjointness
Authors:
Scott, Alex; Wilmer, Elizabeth
Abstract:
A k-uniform hypergraph is s-almost intersecting if every edge is disjoint from exactly s other edges. We prove a strengthened version of this conjecture and determine the extremal graphs. We also give some related results and conjectures.
Citation:
Alex Scott and Elizabeth Wilmer. 2014. "Hypergraphs of bounded disjointness." SIAM Journal on Discrete Mathematics 28(1): 372-384.
Publisher:
Society for Industrial and Applied Mathematics
DATE ISSUED:
2014
Department:
Mathematics
Type:
Article
PUBLISHED VERSION:
10.1137/130925670
PERMANENT LINK:
http://hdl.handle.net/11282/566822

Full metadata record

DC FieldValue Language
dc.contributor.authorScott, Alexen
dc.contributor.authorWilmer, Elizabethen
dc.date.accessioned2015-08-13T10:34:52Zen
dc.date.available2015-08-13T10:34:52Zen
dc.date.issued2014en
dc.identifier.citationAlex Scott and Elizabeth Wilmer. 2014. "Hypergraphs of bounded disjointness." SIAM Journal on Discrete Mathematics 28(1): 372-384.en
dc.identifier.issn0895-4801en
dc.identifier.urihttp://hdl.handle.net/11282/566822en
dc.description.abstractA k-uniform hypergraph is s-almost intersecting if every edge is disjoint from exactly s other edges. We prove a strengthened version of this conjecture and determine the extremal graphs. We also give some related results and conjectures.en
dc.language.isoen_USen
dc.publisherSociety for Industrial and Applied Mathematicsen
dc.identifier.doi10.1137/130925670en
dc.subject.departmentMathematicsen
dc.titleHypergraphs of bounded disjointnessen
dc.typeArticleen
dc.identifier.journalSIAM Journal on Discrete Mathematicsen
dc.subject.keywordExtremal set theoryen_US
dc.subject.keywordIntersection theoremsen_US
dc.subject.keywordHypergraphsen_US
dc.subject.keywordMultihypergraphsen_US
dc.identifier.volume28en
dc.identifier.issue1en
dc.identifier.startpage372en
All Items in The Five Colleges of Ohio Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.