Optical-to-Microwave Frequency Comparison with a Fractional Uncertainty of 10-15

Title:
Optical-to-Microwave Frequency Comparison with a Fractional Uncertainty of 10-15
Authors:
Stalnaker, Jason E.; Diddams, S. A.; Fortier, T. M.; Kim, K.; Hollberg, L.; Bergquist, J. C.; Itano, W. M.; Delaney, M. J.; Lorini, L.; Heavner, T. P.; Jefferts, Steven R.; Levi, F.; Parker, T. E.; Shirley, J.; Oskay, W. H.
Abstract:
We report the technical aspects of the optical-to-microwave comparison for our recent measurements of the optical frequency of the mercury single-ion frequency standard in terms of the SI second as realized by the NIST-F1 cesium fountain clock. Over the course of six years, these measurements have resulted in a determination of the mercury single-ion frequency with a fractional uncertainty of less than 7×10-16, making it the most accurately measured optical frequency to date. In this paper, we focus on the details of the comparison techniques used in the experiment and discuss the uncertainties associated with the optical-to-microwave synthesis based on a femtosecond laser frequency comb. We also present our most recent results in the context of the previous measurements of the mercury single-ion frequency and arrive at a final determination of the mercury single-ion optical frequency: f(Hg+)=1 064 721 609 899 145.30(69) Hz.
Citation:
Stalnaker, J. E., S. A. Diddams, T. M. Fortier, K. Kim, et al. 2007. "Optical-to-microwave frequency comparison with a fractional uncertainty of 10-15." Applied Physics B 89(167).
Publisher:
Springer
DATE ISSUED:
2007
Department:
Physics and Astronomy
Type:
article
PUBLISHED VERSION:
10.1007/s00340-007-2762-z
PERMANENT LINK:
http://hdl.handle.net/11282/310220

Full metadata record

DC FieldValue Language
dc.contributor.authorStalnaker, Jason E.en_US
dc.contributor.authorDiddams, S. A.en_US
dc.contributor.authorFortier, T. M.en_US
dc.contributor.authorKim, K.en_US
dc.contributor.authorHollberg, L.en_US
dc.contributor.authorBergquist, J. C.en_US
dc.contributor.authorItano, W. M.en_US
dc.contributor.authorDelaney, M. J.en_US
dc.contributor.authorLorini, L.en_US
dc.contributor.authorHeavner, T. P.en_US
dc.contributor.authorJefferts, Steven R.en_US
dc.contributor.authorLevi, F.en_US
dc.contributor.authorParker, T. E.en_US
dc.contributor.authorShirley, J.en_US
dc.contributor.authorOskay, W. H.en_US
dc.date.accessioned2013-12-23T16:28:20Zen
dc.date.available2013-12-23T16:28:20Zen
dc.date.issued2007en
dc.identifier.citationStalnaker, J. E., S. A. Diddams, T. M. Fortier, K. Kim, et al. 2007. "Optical-to-microwave frequency comparison with a fractional uncertainty of 10-15." Applied Physics B 89(167).en_US
dc.identifier.issn0946-2171en_US
dc.identifier.urihttp://hdl.handle.net/11282/310220en
dc.description.abstractWe report the technical aspects of the optical-to-microwave comparison for our recent measurements of the optical frequency of the mercury single-ion frequency standard in terms of the SI second as realized by the NIST-F1 cesium fountain clock. Over the course of six years, these measurements have resulted in a determination of the mercury single-ion frequency with a fractional uncertainty of less than 7×10-16, making it the most accurately measured optical frequency to date. In this paper, we focus on the details of the comparison techniques used in the experiment and discuss the uncertainties associated with the optical-to-microwave synthesis based on a femtosecond laser frequency comb. We also present our most recent results in the context of the previous measurements of the mercury single-ion frequency and arrive at a final determination of the mercury single-ion optical frequency: f(Hg+)=1 064 721 609 899 145.30(69) Hz.en_US
dc.publisherSpringeren_US
dc.identifier.doi10.1007/s00340-007-2762-zen
dc.subject.departmentPhysics and Astronomyen_US
dc.titleOptical-to-Microwave Frequency Comparison with a Fractional Uncertainty of 10-15en_US
dc.typearticleen_US
dc.identifier.journalApplied Physics Ben_US
dc.identifier.volume89en_US
dc.identifier.issue167en_US
All Items in The Five Colleges of Ohio Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.