Intrinsic Subthreshold Oscillations Extend The Influence Of Inhibitory Synaptic Inputs On Cortical Pyramidal Neurons

Title:
Intrinsic Subthreshold Oscillations Extend The Influence Of Inhibitory Synaptic Inputs On Cortical Pyramidal Neurons
Authors:
Stiefel, Klaus M.; Fellous, Jean-Marc; Thomas, Peter J.; Sejnowski, Terrence J.
Abstract:
Fast inhibitory synaptic inputs, which cause conductance changes that typically last for 10-100 ms, participate in the generation and maintenance of cortical rhythms. We show here that these fast events can have influences that outlast the duration of the synaptic potentials by interacting with subthreshold membrane potential oscillations. Inhibitory postsynaptic potentials (IPSPs) in cortical neurons in vitro shifted the oscillatory phase for several seconds. The phase shift caused by two IPSPs or two current pulses summed non-linearly. Cholinergic neuromodulation increased the power of the oscillations and decreased the magnitude of the phase shifts. These results show that the intrinsic conductances of cortical pyramidal neurons can carry information about inhibitory inputs and can extend the integration window for synaptic input.
Citation:
Stiefel, Klaus M., Jean-Marc Fellous, Peter J. Thomas, and Terrence J. Sejnowski. 2010. "Intrinsic Subthreshold Oscillations Extend The Influence Of Inhibitory Synaptic Inputs On Cortical Pyramidal Neurons." European Journal Of Neuroscience 31(6): 1019-1026.
Publisher:
Wiley-Blackwell
DATE ISSUED:
2010-03
Department:
Neuroscience
Type:
article
PUBLISHED VERSION:
10.1111/j.1460-9568.2010.07146.x
PERMANENT LINK:
http://hdl.handle.net/11282/309982

Full metadata record

DC FieldValue Language
dc.contributor.authorStiefel, Klaus M.en_US
dc.contributor.authorFellous, Jean-Marcen_US
dc.contributor.authorThomas, Peter J.en_US
dc.contributor.authorSejnowski, Terrence J.en_US
dc.date.accessioned2013-12-23T16:22:31Zen
dc.date.available2013-12-23T16:22:31Zen
dc.date.issued2010-03en
dc.identifier.citationStiefel, Klaus M., Jean-Marc Fellous, Peter J. Thomas, and Terrence J. Sejnowski. 2010. "Intrinsic Subthreshold Oscillations Extend The Influence Of Inhibitory Synaptic Inputs On Cortical Pyramidal Neurons." European Journal Of Neuroscience 31(6): 1019-1026.en_US
dc.identifier.issn0953-816Xen_US
dc.identifier.urihttp://hdl.handle.net/11282/309982en
dc.description.abstractFast inhibitory synaptic inputs, which cause conductance changes that typically last for 10-100 ms, participate in the generation and maintenance of cortical rhythms. We show here that these fast events can have influences that outlast the duration of the synaptic potentials by interacting with subthreshold membrane potential oscillations. Inhibitory postsynaptic potentials (IPSPs) in cortical neurons in vitro shifted the oscillatory phase for several seconds. The phase shift caused by two IPSPs or two current pulses summed non-linearly. Cholinergic neuromodulation increased the power of the oscillations and decreased the magnitude of the phase shifts. These results show that the intrinsic conductances of cortical pyramidal neurons can carry information about inhibitory inputs and can extend the integration window for synaptic input.en_US
dc.language.isoen_USen_US
dc.publisherWiley-Blackwellen_US
dc.identifier.doi10.1111/j.1460-9568.2010.07146.xen
dc.subject.departmentNeuroscienceen_US
dc.titleIntrinsic Subthreshold Oscillations Extend The Influence Of Inhibitory Synaptic Inputs On Cortical Pyramidal Neuronsen_US
dc.typearticleen_US
dc.identifier.journalEuropean Journal Of Neuroscienceen_US
dc.subject.keywordCortexen_US
dc.subject.keywordHilbert transformen_US
dc.subject.keywordInhibitory postsynaptic potential (ipsp)en_US
dc.subject.keywordOscillationsen_US
dc.subject.keywordPhase shiften_US
dc.subject.keywordLayer-ii neuronsen_US
dc.subject.keywordEntorhinal cortexen_US
dc.subject.keywordPostsynaptic potentialsen_US
dc.subject.keywordNetworken_US
dc.subject.keywordNeocortical neuronsen_US
dc.subject.keywordIonic mechanismsen_US
dc.subject.keywordIn-vitroen_US
dc.subject.keywordSummationen_US
dc.subject.keywordInterneuronsen_US
dc.subject.keywordSynchronizationen_US
dc.subject.keywordNeurosciencesen_US
dc.identifier.volume31en_US
dc.identifier.issue6en_US
dc.identifier.startpage1019en_US
All Items in The Five Colleges of Ohio Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.